segunda-feira, 10 de fevereiro de 2020


FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]


  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • x
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D




núcleo atómico é constituído por protões, que possuem carga eléctrica positiva, e neutrões que possuem ambas as cargas eléctricas (negativa e positiva), o que a torna neutra. Cada protão do núcleo tenta afastar outro protão, devido à repulsão eléctrica, só não o faz por existir uma outra força de atração entre os neutrões e os protões, e com isso parcialmente contrabalançando a repulsão eléctrica protão-protão.
Historicamente, vários modelos foram propostos para o núcleo: Modelo da gota líquidaModelo óticoModelo coletivo entre muitos outros. Entretanto, o panorama do núcleo atômico só foi ficando mais claro quando a estrutura das próprias partículas elementares (próton e nêutron) foi sendo desvendada, demonstrando que estas não eram assim verdadeiramente elementares.
As forças de coesão nuclear foram propostas primeiramente com base nos modelos de múons e píons como integrantes da chamada "cola nuclear". Entretanto, os modelos atômicos mais recentes explicam que prótons e nêutrons compartilham uma sub partícula. A tal sub partícula compartilhada é um glúon. Um próton e um nêutron se comportam como dois cachorros brigando por um osso: ora o osso (o glúon) está com um cachorro (o próton) e ora está com o outro cachorro (o nêutron), assim eles se mantém próximos. Como são diversos prótons e diversos nêutrons, a "disputa" envolve todas as partículas e elas se mantém unidas. Essa união enfraquece se o átomo for muito grande como num átomo de urânio, por exemplo. Esses átomos muito grandes são instáveis e podem perder partes de si - processo chamado de desintegração radioativa. Existem vários modelos para explicar como o átomo é constituído. OS primeiros, como o de Dalton, tratam o átomo como uma esfera maciça, homogénea e indivisível, totalmente oposto aos fenómenos radioativos conhecidos. A radioatividade provoca alterações no núcleo e, em alguns casos, ele pode ser quebrado para formar novas substâncias. O modelo de Thompson explica a presença de cargas elétricas no átomo, que ainda é tido como esférico. A presença de um núcleo só começou a fazer parte dos modelos atômicos que surgiram posteriormente a Rutherford.

    Propriedades básicas do núcleo atômico[editar | editar código-fonte]

    O núcleo é caracterizado pelo número atómico Z e a pela massa atómica A. A carga do núcleo é determinada pelo número de cargas positivas que contém. O portador da carga elementar,  , no núcleo é o protão. Dado que o átomo como um todo é eletricamente neutro, a carga nuclear determina simultaneamente o número de electrões em torno do núcleo. Em outras palavras, os elementos químicos são identificados pela sua carga nuclear ou, pelos seus números atômicos.
    A massa do núcleo atômico é praticamente a mesma que a do átomo inteiro porque a massa dos electrões no átomo é insignificante. A massa do electrão é 1/1836 parte da massa do protão. É hábito medir a massa do átomo em unidades de massa atómica, abreviadamente (u.m.a.) A unidade de massa atômica (u.m.a) é a décima segunda parte, 1/12 , da massa do átomo de carbono  neutro.
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    número atômico, estrutura eletrônica, níveis de energia 
    onde c, velocidade da luz, é igual a .]


    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • x
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D


    Spin e momento magnético[editar | editar código-fonte]

    O núcleo consiste de protões e neutrões, cada um dos quais com spin  . O spin nuclear é o vector soma dos momentos angulares de spin de todas as partículas componentes. Um núcleo composto por um número par de nucleões possui um spin inteiro (em unidades de  ) ou spin nulo.[1]
    Para além do spin nuclear, o núcleo possui um momento magnético. Assim, todas as partículas atômicas (o núcleo e os electrões) possuem um momento magnético.
    O momento magnético do núcleo, é determinado pelos momentos magnéticos das suas partículas componentes. Por analogia com o magnetão de Bohr, os momentos magnéticos dos núcleos são expressos em termos do tão chamado magnetão nuclear definido como
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    número atômico, estrutura eletrônica, níveis de energia 
    onde c, velocidade da luz, é igual a .]


    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • x
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D


    Onde  é o rácio giromagnético nuclear.[1]

    Constituintes nucleares[editar | editar código-fonte]

    Qual é a composição do núcleo? Como é que o átomo nuclear pode se tornar estável? Respostas a estas perguntas poderiam ser dadas somente depois da descoberta de várias propriedades do núcleo, notavelmente carga nuclear Z, massa nuclear e spin nuclear.
    Notou-se que a carga nuclear é definida pela soma das cargas positivas que o núcleo contém. Dado que a carga elementar positiva é associada com o protão, a presença de protões no núcleo parecia estar para além de qualquer dúvida desde o início.
    Foram também estabelecidos mais dois factos, nomeadamente:
    • Notou-se que as massas dos isótopos (exceto o hidrogénio ordinário), expressas em unidades de massa de protão, eram numericamente maiores do que as suas cargas nucleares expressas em unidades de carga elementar, acentuando-se esta diferença com o aumento no Z. Para os elementos localizados no meio da tabela periódica, as massas isotópicas (u.m.a) são cerca de duas vezes maiores do que a carga nuclear. O rácio é ainda maior para os núcleos pesados. Entretanto, alguém foi forçado a pensar que os protões não eram as únicas partículas que compõem o núcleo.
    • As massas dos núcleos isotópicos de todos elementos químicos sugeriram duas possibilidades: quer as partículas que compõem o núcleo possuíam quase a mesma massa, ou o núcleo continha partículas que diferiam nas suas massas até ao ponto onde a massa de algumas era insignificante em comparação à massa das outras. Isto é, a sua massa não contribuía de forma considerável, para a massa isotópica.
    A última possibilidade pareceu especialmente atrativa porque estava perfeitamente de acordo com o modelo protão-electrão do núcleo. Que o núcleo poderia conter electrões pareceu resultar do facto de que o decaimento beta natural é acompanhado pela emissão de electrões. O modelo protão-electrão explicou também a razão porque os pesos atômicos isotópicos eram aproximadamente inteiros. De acordo com este modelo, a massa do núcleo deveria ser parcialmente igual às massas dos protões que o compõem, porque a massa do elétron era cerca de  da massa do protão. O número de electrões no núcleo deve ser tal que a carga total devido aos protões positivos e electrões negativos é a verdadeira carga positiva do núcleo.
    Por toda a sua simplicidade e lógica, o modelo protão-electrão foi refutado por avanços na Física Nuclear. Com efeito, este modelo ia contra as propriedades mais importantes do núcleo.
    Se o núcleo contivesse electrões, o momento magnético nuclear deveria ser da mesma ordem de grandeza como o magnetão eletrónico de Bohr. Note que o momento magnético nuclear é definido pelo magnetão nuclear o qual é cerca de  do magnetão eletrónico.[1]
    Dados sobre spin nuclear, também testemunharam contra o modelo protão - electrão. Por exemplo: de acordo com este modelo, o núcleo de Berílio,  deveria conter nove protões e cinco electrões de modo que a carga total deveria ser igual a quatro cargas positivas elementares. O protão e o electrão tem cada um spin semi-inteiro,. O spin total do núcleo formado por 14 partículas (nove protões e cinco electrões) deveria ser inteiro. Na verdade, o núcleo de Berílio,  , possui um spin semi-inteiro de valor . Muitos mais exemplos poderiam ser citados.[1]
    Último mas não menos importante, o modelo protão-electrão entrou em conflito com o princípio de incerteza de Heisenberg. Se o núcleo contivesse electrões, então a incerteza na posição do electrão, , deveria ser comparável com as dimensões lineares do núcleo, isto é,  ou m. Vamos escolher o valor maior, m. A partir da relação de incerteza de Heisenberg para o momento do electrão nós temos:
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    número atômico, estrutura eletrônica, níveis de energia 
    onde c, velocidade da luz, é igual a .]


    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • x
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D


    O momento linear P é diretamente relacionado com a sua (energia), isto é
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    número atômico, estrutura eletrônica, níveis de energia 
    onde c, velocidade da luz, é igual a .]


    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • x
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D


    Uma vez conhecido o momento do electrão, pode-se prontamente determinar a sua energia. Dado que no exemplo a cima
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    número atômico, estrutura eletrônica, níveis de energia 
    onde c, velocidade da luz, é igual a .]


    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • x
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D


    , deverá se usar a relação relativista para a energia e momento:
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    número atômico, estrutura eletrônica, níveis de energia 
    onde c, velocidade da luz, é igual a .]


    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • x
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D


    Depois nós obtemos:
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    número atômico, estrutura eletrônica, níveis de energia 
    onde c, velocidade da luz, é igual a .]


    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • x
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D


    Este valor é excessivamente grande comparativamente a (7-8)MeV encontrado para energia de ligação através de experiências e é muitas vezes a energia dos electrões emitidos no decaimento – beta. Se, por outro lado, os electrões no núcleo era suposto possuírem energia comparável com aquela associada com as partículas emitidas no decaimento beta (poucos MeV), então a região onde os electrões devem ser localizados, isto é, o tamanho do núcleo determinado a partir das relações de incerteza deveria ser muito grande do que o determinado a partir de observações.
    Um outro caminho foi encontrado quando em 1932 James Chadwick descobriu uma nova partícula fundamental.
    A partir de análise das trajetórias seguidas por partículas produzidas em algumas reações nucleares e aplicando a lei de conservação de energia e de momento linear.[1] Chadwick concluiu que estas trajetórias somente poderiam ser seguidas por partículas com massa ligeiramente maior do que a massa do protão e com carga nulo. Por essa razão, a nova partícula foi chamada neutrão. De acordo com as visões atuais, o núcleo consiste de nucleões: protões e neutrões. Como a massa do núcleo é cerca de 2000 vezes a massa do electrão, o núcleo praticamente carrega toda a massa do átomo. O nuclídeo é uma combinação específica de um número de protões e neutrões. O símbolo completo para o nuclídeo é escrito como:
    Onde X é o símbolo químico do elemento, Z é o número atómico, dando o número de protões no núcleo. A é o número total de nucleões no núcleo. É também conhecido como o número de massa. N = A - Z é o número de neutrões. Na Física Nuclear diz-se que o protão e o neutrão são dois estados de carga da mesma partícula, o nucleão. O protão é o estado protónico do nucleão com carga +e, e o neutrão é o seu estado neutrónico com carga nula. De acordo com os dados mais recentes, a massa de repouso do protão e a do neutrão é respectivamente igual a:
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    número atômico, estrutura eletrônica, níveis de energia 
    onde c, velocidade da luz, é igual a .]


    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • x
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D


    O protão e o neutrão possuem o mesmo número de massa igual a unidade. No núcleo, os nucleões estão em estados que substancialmente diferem dos seus estados livres. A razão disto é que em todos os núcleos, excepto o do hidrogénio ordinário, existem pelo menos dois nucleões entre os quais existe uma interação nuclear especial ou emparelhamento. O modelo protão – neutrão do núcleo conta para ambos, valores observados de massas isotópicas e os momentos magnéticos dos núcleos. Dado que os momentos magnéticos do protão e neutrão são da mesma ordem de grandeza que o magnetão nuclear, segue que o núcleo composto de nucleões deveria ter um momento magnético da mesma ordem de grandeza que o magnetão nuclear. Portanto, com protões e neutrões como entidades constituintes dos núcleos, o momento magnético deveria ser da mesma ordem de grandeza. Observações confirmaram este fato.[1]
     é a escala de comprimento típica da Física Nuclear.
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    número atômico, estrutura eletrônica, níveis de energia 
    onde c, velocidade da luz, é igual a .]


    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • x
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D


    Além disso, com os protões e neutrões como constituintes dos núcleos, o princípio de incerteza leva a um valor razoável de energia para estas partículas no núcleo, em completo acordo com as energias observadas por partícula.
    Finalmente, com a suposição de que os núcleos são compostos de neutrões e protões, a dificuldade que surge do spin nuclear também foi resolvida. Entretanto, se o núcleo contém um número par de nucleões, tem um spin inteiro (em unidades de ). Com um número impar de nucleões, o seu spin será semi – inteiro em unidades de ).[1]

    Energia de ligação Nuclear[editar | editar código-fonte]

    Núcleos atómicos contendo protões electrizados positivamente e neutrões não eletrizados perfazem sistemas estáveis apesar do facto de que os protões experimentam repulsão de Coulomb. A estabilidade dos núcleos é uma indicação de que deve existir uma espécie de força de ligação entre os nucleões. A força de ligação pode ser investigada na base considerações energéticas apenas, sem evocar quaisquer considerações que dizem respeito à natureza e propriedades das forças nucleares.
    A ideia sobre a intensidade das forças de ligação no sistema pode ser obtida a partir do esforço necessário para quebrá-lo, isto é, para realizar trabalho contra as forças de ligação.
    Este procedimento leva aos vários fatos importantes sobre as forças que mantém os nucleões no núcleo. A energia necessária para remover qualquer nucleão do interior do núcleo é chamada energia de ligação (ou separação) do nucleão no núcleo. É igual ao trabalho que deve ser realizado para remover o nucleão a partir do núcleo sem comunicar-lhe qualquer energia cinética.
    A energia de ligação total do núcleo é definida como o valor do trabalho que deve ser realizado para quebrar o núcleo em seus nucleões constituintes. A partir da lei de conservação de energia segue que ao formar o núcleo, a mesma quantidade de energia deve ser libertada como a que foi fornecida ao núcleo para quebrá-lo.
    O valor da energia de ligação dos núcleos pode ser estimado a partir das seguintes considerações. Foi descoberto que a massa em repouso de qualquer núcleo permanentemente estável é menor do que a soma das massas em repouso dos nucleões que ele contém. Tudo se passa como se, ao ´´empacotar´´ os protões e neutrões para formar o núcleo, eles perdessem alguma de suas massas.
    Uma explicação desse fenômeno é dada pela teoria da relatividade especial. Este fato é levado em conta pela conversão duma parte da massa das partículas em energia de ligação. A energia de repouso do corpo, , é relacionada à sua massa de repouso  pela expressão:
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    número atômico, estrutura eletrônica, níveis de energia 
    onde c, velocidade da luz, é igual a .]


    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • x
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    Onde c é a velocidade da luz no vácuo. Designando a energia libertada durante a formação do núcleo como , então a massa equivalente da energia de ligação total
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    número atômico, estrutura eletrônica, níveis de energia 
    onde c, velocidade da luz, é igual a .]


    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • x
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D


    é o decréscimo na massa em repouso a medida que os nucleões se juntam para formar o núcleo. A grandeza  é também conhecida como defeito de massa ou decremento de massa. Se um núcleo de massa M é composto de um número Z de protões com massa  e dum número A - Z de neutrões com a massa  , a grandeza  é dada por:
    A grandeza  dá a medida da energia de ligação,
    Na Física Nuclear, as energias são expressas em unidades de energia atómicas (uea) correspondendo à unidades de massa atómica:
    Assim, para determinar a energia de ligação em MeV, deverá se usar a equação:
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    número atômico, estrutura eletrônica, níveis de energia 
    onde c, velocidade da luz, é igual a .]


    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • x
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D


    Onde as massas dos nucleões e a massa do núcleo são expressos em unidades de massa atómica. Em média, a energia de ligação por nucleão é cerca de 8 MeV, a qual é justamente um valor grande.

    Estabilidade Nuclear[editar | editar código-fonte]

    Tabela estabilidade.png
    Nem todos os núcleos são estáveis. Núcleos instáveis sofrem decaimentos radioativos em transformam-se em núcleos diferentes. Núcleos estáveis têm aproximadamente números iguais de neutrões e protões N = Z para pequenos A <20 e pequenos excessos de neutrões para A maiores, como mostra o diagrama.
    Núcleos: Estabilidade versus razão N/Z
    • 3000 núcleos conhecidos, apenas 266 são estáveis. -Z > 83 elementos não estáveis.
    • Tendência para N = Z,
    mas N > Z para Z de valores elevados (devido à repulsão entre protões)
    • Estabilidade não usual para
    ´´números mágicos´´.
    Z , N = 2, 8, 20, 28, 50, 82, 126
    (análogo à capas/camadas electrónicas)
    princípio de exclusão de Pauli ajuda a perceber o facto de que núcleos com iguais Z e N são estáveis. Imagine preenchendo uma caixa unidimensional com protões e neutrões.
    Nós precisamos da configuração de energia mínima para um dado valor de A, seja 5. Dado que ambos, neutrões e protões possuem spin ½, eles são fermiões (como electrões) e por consequência obedecem o princípio de exclusão de Paulí. Este princípio restringe o número de protões e neutrões à 2 para cada em cada nível energético. Recorde-se que a energia do n (enésimo) nível de energia numa caixa unidimensional é dada por , onde  é a energia do nível fundamental.
    Se todos os cinco nucleões fossem electrões, a energia total do núcleo seria  como é mostrado no diagrama A. Em contraste, se 3 fossem neutrões e 2 protões (como mostrado em B), a energia seria  a qual é muito menor. Esta simples imagem mostra que é mais energeticamente favorável ter N ~ Z.
    Nucleo estabilidade.png
    Se incluirmos a repulsão de Coulomb entre protões, os níveis de energia de protões tornam-se maiores do que os níveis de energia dos neutrões. A menina A aumenta, torna-se mais favorável ter um pequeno excesso neutrões.
    Alguns elementos possuem mais isótopos estáveis que outros. Os elementos com maior número de isótopos estáveis têm valores de Z de 2, 8, 20, 28, 50, 82 e 126. Estes são chamados números mágicos, porque a razão da estabilidade não foi compreendida na altura da sua descoberta. Por exemplo, Cálcio (Z = 20) tem 6 isótopos estáveis enquanto Potássio (Z = 19) e Escândio (Z = 21) possuem somente 2 isótopos estáveis cada. De forma semelhante, núcleos com N igual a número mágico tem um número maior que o valor médio de isotones (isotone tem valores de N iguais e diferentes valores de Z).
    Núcleos com A ~ 60 são mais estreitamente ligados juntos e assim eles estão em níveis de energia baixos do que os demais. (Energia de ligação é análoga a energia necessária para elevar um balde de água a partir do poço. Uma energia de ligação maior significa que a água está baixa no poço, isto é, a água está num nível baixo). Se dois núcleos leves com A << 60 são postos juntos eles criam novos núcleos num estado com energia de repouso baixa (isto é chamado fusão). Além disso um núcleo pesado com A>> 60 pode-se dividir em dois núcleos de energia de repouso baixa (isto é chamado fissão).

    Abundância isotópica e de Massa[editar | editar código-fonte]

    A abundância relativa de um isótopo na natureza comparado a outros isótopos do mesmo elemento é relativamente constante. O gráfico dos nuclídeos apresenta a abundância relativa de isótopos de elementos que ocorrem naturalmente em unidades de átomos porcento.
    Átomo porcento é a percentagem de átomos de um elemento que são de um isótopo particular. Átomo porá percentagem do peso do elementocento é abreviado como a/o.
    Por exemplo, se um copo de água contém  átomos de Oxigénio, e a abundância isotópica do Oxigénio – 18 é 0,20%, então o existem  átomos de Oxigénio – 18 no copo.
    O peso atómico para o elemento é definido como o peso atómico médio dos isótopos do elemento. O peso atómico para o elemento é calculado pela soma dos produtos da abundância isotópica do isótopo com a massa atómica do isótopo.
    Exemplo
    Calcule o peso atómico para o elemento Lítio. Lítio – 6 tem abundância de átomo por cento de 7,5 % e uma massa atómica de 6,015122 u.m.a. Lítio – 7 tem abundância atómica de 92,5 % e uma massa atómica de 7,016003 u.m.a
    Solução:
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    número atômico, estrutura eletrônica, níveis de energia 
    onde c, velocidade da luz, é igual a .]


    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • x
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D


    A outra medida mais comum da abundância isotópica é o peso porcento (w/o).
    Peso porcento é a percentagem do peso dum elemento que é isótopo particular. Por exemplo, se a amostra de um material contém 100 kg de Urânio que era 28 w/o Urânio – 235, então 28 kg de Urânio – 235 estava presente na amostra.




    RELATIVIDADE SDCTIE GRACELI EM O momento magnético nuclear é o momento magnético de um núcleo atômico e surge a partir da rotação dos prótons e nêutrons. É principalmente um momento de dipolo magnético.
    O momento magnético nuclear varia de isótopo para isótopo dependendo do elemento. Podendo só ser zero se o número de prótons e nêutrons são ambos o mesmo.

      Fatores-g[editar | editar código-fonte]

      Os valores de g(l) e g(s) são conhecidos como o fatores G dos núcleos.
      Os valores medidos de g(l) para o nêutron e o próton são de acordo com a suas cargas elétricas. Assim, em unidades de magnetão nuclear, g(l) = 0 para o nêutron e g(l) = 1 para o próton
      Os valores medidos de g(s) para o nêutron e o próton são duas vezes o seu momento magnético. Nas unidades de magnetão nuclear , g(s) = -3.8263 para o nêutron e g(s) = 5.5858 para o próton.

      Calculando o momento magnético nuclear[editar | editar código-fonte]

      No modelo nuclear de camadas, o momento magnético de um nucleon de momento angular total j, o momento angular orbital l e spin s, é dado por:
      Ao projetar com o momento angular total j ,temos
       
      X

      FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

      x
       [EQUAÇÃO DE DIRAC].

       + FUNÇÃO TÉRMICA.

         +    FUNÇÃO DE RADIOATIVIDADE

        ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

        + ENTROPIA REVERSÍVEL 

      +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

       ENERGIA DE PLANCK

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

      • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
        x
      número atômico, estrutura eletrônica, níveis de energia 
      onde c, velocidade da luz, é igual a .]


      • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
      • x
      • X
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D


       em contribuições tanto do momento angular orbital e do spin, com diferentes coeficientes g(l) e g(s):
      substituindo para a fórmula de cima e reescrevendo
       

      X

      FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

      x
       [EQUAÇÃO DE DIRAC].

       + FUNÇÃO TÉRMICA.

         +    FUNÇÃO DE RADIOATIVIDADE

        ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

        + ENTROPIA REVERSÍVEL 

      +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

       ENERGIA DE PLANCK

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

      • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
        x
      número atômico, estrutura eletrônica, níveis de energia 
      onde c, velocidade da luz, é igual a .]


      • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
      • x
      • X
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D


      Para um único nucleon . Para  nós temos
      e para 
      X

      FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

      x
       [EQUAÇÃO DE DIRAC].

       + FUNÇÃO TÉRMICA.

         +    FUNÇÃO DE RADIOATIVIDADE

        ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

        + ENTROPIA REVERSÍVEL 

      +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

       ENERGIA DE PLANCK

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

      • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
        x
      número atômico, estrutura eletrônica, níveis de energia 
      onde c, velocidade da luz, é igual a .]


      • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
      • x
      • X
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D